
Causal Structure of General Relativistic Spacetimes

A general relativistic spacetime is a pairM; gab whereM is a di¤erentiable manifold
and gab is a Lorentz signature metric (+ + +:::�) de�ned on all of M .
(1) Existence of a Lorentzian metric.

What conditions must M satisfy to admit a Lorentz signature metric?

Lemma: A necessary and su¢ cient condition forM to admit a Lorentzian
metric is the existence of a continuous non-vanishing line element �eld on
M , i.e. a continuous assignment to each p 2 M of a one-dimensional
subspace of Mp.

(i) Any non-compact M will do. (ii) Not any compact M will do. In the case
of dim(M) = 2 signature (+�) (a) torus S1xS1 will do, but (b) S2 will not do�
can�t comb a two-sphere! In general, what topological conditions must a compact
n-dimensional M satisfy?

(2) Temporal orientability.

M; gab is temporally orientable i¤ it admits a globally consistent time sense.

Lemma: The following conditions are equivalent:

(i) There exists a continuous non-vanishing timelike vector �eld on M .

(ii) Any means of transporting a timelike vector around an arbitrary closed
loop in spacetime that is continuous and keeps the vector timelike does
not result in time inversion of the vector when it returns to the starting
point.

(iii) Parallel transport of a timelike vector around an arbitrary closed loop
in the spacetime does not result in time inversion.

Lemma: For any M; gab if M is simply connected, then M; gab is tempo-
rally orientable.

Cor : If M; gab is not temporally orientable, then temporal orientability
can be achieved by passing to a covering spacetime.

(3) Chronology.

Suppose that M; gab is temporally orientable. Choose one of the two possible ori-

entations as giving the future direction of time.
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Def.: For p; q 2 M , p << q (p chronologically precedes q) i¤ there is a
future directed timelike curve from p to q.

Lemma: << is a transitive relation.

Def.: The time oriented spacetime M; gab has a time order i¤ << is ir-
re�exive, i.e. 8p 2M � (p << p) (i.e. there are no closed future directed
timelike curves (CTCs), a.k.a. the chronology condition).

Lemma: For any time oriented spacetime M; gab, if M is compact then
there are CTCs.

Def.: A violation of the chronology condition is intrinsic to M; gab if it
does not result from making identi�cations in a larger spacetime. This
will be the case if M is simply connected. Gödel spacetime will prove to
be such a case.

Def.: The chronological past of p is I�(p) := fq 2 M : q << pg. The
chronological future I+(p) of p is de�ned analogously.

Def.: A spacetime is chronologically vicious i¤ 8p 2M p << p.

Def.: A spacetimeM; gab is re�ecting i¤ for all p; q 2M , I+(p) � I+(q),
I�(q) � I�(q).

Lemma: Let M; gab be a re�ecting spacetime. If there is a CTC trough
any point of M; gab then the spacetime is chronologically vicious.

(4) Causality.

Def.: p < q (p causally precedes q) i¤ there is a future directed causal
curve from p to q.

Def.: The causal past of p is C�(p) := fq 2M : q < pg. The causal future
C+(p) of p is de�ned analogously.

Lemma: < is a transitive relation.

Def.: The time oriented spacetime M; gab has a causal order i¤ < is ir-
re�exive, i.e. 8p 2 M � (p < p) (i.e. there are no closed future directed
causal curves (CCCs), a.k.a. the basic causality condition).

Lemma: The causality condition is stronger than the chronology condi-
tion.

(5) Past and future distinguishing.
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Def.: A time oriented spacetime M; gab is past (respectively, future) dis-
tinguishing i¤ 8p; q 2 M [(I�(p) = I�(q)) ) p = q] (respectively,
[(I+(p) = I+(q))) p = q]).

Lemma: Past and future distinguishing are stronger than the causality
condition. If a spcetime is re�ecting, then it is both past and future
distinguishing if it is either.

(6) Strong causality.

Def.: A time oriented spacetime spacetime M; gab is strongly causal i¤
it possesses no almost closed causal curves, i.e. 8p 2 M and any open
neighborhood N(p) there is a subneighborhood N 0(p) � N(p) such that
once a future directed causal curve leaves N 0(p) it never renters.

Lemma: Strong causality is stronger than past and future distinguishing.

Lemma: If M; gab is strongly causal then the manifold topology of M
coincides with the Alexandrov topology where a basis of open sets is given
by sets of the form I�(p) \ I+(q) for p; q 2M .

(7) Stable causality.

Def. A time oriented spacetime spacetime M; gab is stably causal i¤ it
satis�es basic causality and there exists a metric g0ab such that at every
point p 2 M the null cone of g0ab is wider than the null cone of gab but
M; g0ab admits no closed causal curves.

Lemma: Stable causality is stronger than strong causality.

Lemma: Stable causality is the necessary and su¢ cient condition for the
existence of a global time function, i.e. a di¤erentiable map t : M ! R
such that whenever p << q, t(p) < t(q).

Lemma: For a re�etcting spacetime all of the following are equivalent:
(i) future distinguishing, (ii) past distinguisging, (iii) stable causality, (iv)
strong causality.

(8) Global hyperbolicity.

Def.: A spacetime spacetime M; gab is globally hyperbolic i¤ it is strongly
causal and 8p; q 2M such that p << q, C�(q) \ C+(p) is compact.

Lemma: M; gab is globally hyperbolic i¤ it admits a Cauchy surface, i.e. a
spacelike hypersurface � which meets every maximally extended timelike
curve exactly once.

3



Lemma: If � is a Cauchy surface for M; gab then M is topologically and
di¤erentiably �xR, where �xftg is a Cauchy surface for every t 2 R (no
topology change).

(9) Domains of dependence and Cauchy horizons

Def. Let � � M; gab be an achronal set, i.e. it is not intersected more
than once by any future directed timelike curve. The the future domain
of dependence D+(�) of � consists of all points p 2 M such that every
past intextendible causal curve through p intersects �. The past domain of
dependence D�(�) is de�ned analogously. The total domain of dependence
D(�) := D+(�) [D�(�). If D+(�) =M then � is a Cauchy surface.

Def. The future Caucy horizon H+(�) of � is the future boundary of
D+(�) (i.e. D+(�) � I�(D+(�)), where the overbar denotes topological
closure.

Lemma: H+(�) is achronal and closed. It is generated by null geodesics
that are either past intendible in H+(�) or else have a past endpoint on
the edge of �.

(10) Chronal isomorphisms

Def.: Let M; gab and M 0; g0ab be two spacetimes. A one-one map � :M !
M 0 is a chronal isomorphism i¤ for all p; q 2M , p << q , �(p) << �(q).

Lemma: In Minkowski spacetime, the chronal isomorphisms are generated
by the inhomogeneous Lorentz transformations and dilations.

Lemma: Let � : (M; gab)! (M 0; g0ab) be a chronal isomorphism. Then the
Alexandrov topologies on M and M 0 are homeomorphic. But in general
the manifold topologies need not be the same. But if the spacetimes are
past and future distinguishing, � is a homeomorphosm of the manifold
topologies (Malament). Further, � is also a smooth conformal isometry so
that the causal structures of M; gab and M 0; g0ab are the same (Hawking,
King, and McCarthy).
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Gödel�s cosmological model

M; gab; T
ab is a solution to Einstein�s �eld equations with positive cosmological

constant.

(i) The Gödel universe is dust �lled, i.e. T ab = �V aV b where � is the density of the
dust and V a is the four-velocity �eld of the dust. The dust is everywhere rotating,
i.e. r[aVb] 6= 0., so the �ow lines are not hypersurface orthogonal (by Frobenius�
theorem).-+

(ii) The metric is stationary.

(iii) M = R4. Thus, the spacetime is temporally orientable. Choose a time
orientation.

(iv) The spacetime is chronologically vicious. And it is intrinsically so.

(v) There does not exist a single global time slice, i.e. spacelike hypersurface
without edges.

(vi) There are no closed time geodesics, so to do time travel you need a rocket.
Let 
(�) be a timelike curve parameterized by proper time � , and let a(�) be the
magnitude of the four-acceleration along 
(�). The total acceleration along 
(�) is
de�ned as TA(
) :=

R


a(�)d� . It can be shown that

TA(
) � ln(mi=mf )

where mi and mf are respectively the initial and �nal masses of the rocket. The
fuel expendede is mi �mf . Thus the percentage of the initial mass of the rocket is
fuel is � 1� 1= exp(TA(
)). It is conjectured that for any CTC in Gödel spacetime,
TA(
) � 2�(9 + 6

p
5)1=2. If so, the percentage of the initial mass of the rocket that

is fuel di¤ers from 100% by less than one part in 2x10�12.

(vii) There is no natural sense in which time in the Gödel universe is �circular.�
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